If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x-42=0
a = 4; b = 24; c = -42;
Δ = b2-4ac
Δ = 242-4·4·(-42)
Δ = 1248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1248}=\sqrt{16*78}=\sqrt{16}*\sqrt{78}=4\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{78}}{2*4}=\frac{-24-4\sqrt{78}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{78}}{2*4}=\frac{-24+4\sqrt{78}}{8} $
| 3w-17w=126 | | 567*x=567, | | 3/4x-(x+1/5)=1/20(x+5) | | 3^4x(3)=27^2x | | y=(-4)-7 | | 5x-3-2x=3x | | 2x-(x-7)=3 | | 30m=47 | | 5x+24/6=x/3 | | 6x+6=6x+13 | | 2x+30+x+6+x=180 | | 1/8p=5.04 | | |4v+4|=-20 | | Bx+4/W=@H | | 2x^2+18x-42=0 | | 4x-6=2x÷8 | | S+26f=94 | | 10m=10-5m+30 | | 6x+5/10=x/2 | | 2a^2+10a-28=0 | | (30-x)+(4x-6)+(2x-16)=180 | | 50-2x=110-42x | | 5v+6=3v+54 | | 120+3x+15=x | | -3=-t+4 | | 72-x=88-2x | | 7y-10(6y+22)=-8 | | 72-x+88-2x=180 | | 115(y+2)=3(4y+5) | | 8^2x-2=32^3x-2 | | 3(60+x)+15=x | | 8t+3t+14t-7=-17 |